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INTRODUCTION

Modelling the causal relationship within a dynamic system is an 

ill-posed mathematical problem and impractical task to  

implement through deterministic methods. The need to employ 

tools of probability are vital to create stochastic models that can 

accurately predict to a degree of certainty what the dynamics of a 

system is telling us. In order  to infer the over behavior of a 

system, it is also important to deconstruct the way in which it is 

connected. A useful parallel that many of the modelling 

techniques are derived from is the structure of two biological 

neurons. Where one is a presynaptic neuron directed towards a 

post-synaptic neuron.     

CAUSAL ALGORITHM
Figure 1: Perturbation Cascade Inference RESULTS

Figure 3: Performance for a perturbation strength of 10 N

Figure 4: Performance for a perturbation strength of 50 N
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BACKGROUND

The notion of causality was original proposed by Weiner but was not 

formalized until Granger [2] published a more rigorous definition 

represented with a vector auto regressive(VAR) model.

Granger’s formulation for predicting 𝑿𝒕 given only the history of a 

time-series 𝑿 is given by 

𝑿𝑡 = σ𝑘=1
𝑛 𝑨𝑘𝑿𝑡−𝑘 + 𝝐𝑡 𝟏  

Where 𝑿𝑡 is the value of the time series at time 𝑡 and 𝑨𝑘 is the 

regression coefficient vector, and 𝝐𝑡 is the error, or residual, for our 

prediction of time 𝑿𝑡.

However, to determine if there is causal relationship between a time 

series 𝑿 and another time series 𝒀, we must compare the 

performance of the equation

𝑿𝑡 = 

𝒌=𝟏

𝒑

𝑨𝑘
′ 𝑿𝑡−𝑘 + 

𝑘=1

𝒑

𝑩′𝒀𝑡−𝑘 + 𝝐𝑡
′  (𝟐)

Similar to eq. (𝟏), to predict a value at some time 𝑡, we use the 

VAR model that is inclusive for both time series data 𝑿 and 𝒀.

Generally, if it is possible to calculate the a more accurate prediction 

of 𝑿 using 𝒀 and the appropriate statistical test indicates 

significance, then we say 𝒀 → 𝑿. Read as 𝒀 causes 𝑿.
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METHOD
Dimensionless Leaky-integrate-and-fire model

The model for the biologically plausible neural dynamics to 

be used will be a dimensionless version of the leaky-

integrate-and-fire (LIF) model. This conductance-based 

model is identical to the  model for a resistor-capacitor (RC) 

circuit and is widely used to its simplicity for numerical 

integration. The simple LIF model is as follows

𝑐𝑚

𝑑𝑉𝑗

𝑑𝑡
= −𝑔𝑚 𝑉𝑗 − 𝑉𝑟𝑒𝑠𝑒𝑡 + 𝐼𝑎𝑝𝑝 𝟑  

Where 𝑐𝑚 is the membrane capacitance of the cell, 𝑔𝑚 is the 

membrane conductance, 𝑉𝑗 is the transmembrane potential 

of the 𝑗th cell, and with 𝑉𝑟𝑒𝑠𝑒𝑡 being the reset threshold for 

the firing of a neuron.  

The specific variant of this model is the dimensionless LIF 

proposed by Lewis and Rinzel [3]. This allows the 

transformation of  (𝟑) into 

d𝑉𝑖

𝑑𝑡
= −𝑉𝑖 + 𝑰𝑎𝑝𝑝 + σ𝑘 𝐴𝑘𝑖𝑰𝑠𝑦𝑛 

+ σ𝑘∈𝒞𝑖
𝑔𝑐( 𝑉𝑘 − 𝑉𝑖 + 𝛽 σ𝑗 𝛿(𝑡 − 𝜏𝑗)) (𝟒)

And the synapse as 

𝐼𝑠𝑦𝑛 = σ𝑗 𝛼2 exp 𝛼 𝑡 − 𝜏𝑗 𝑡 − 𝜏𝑗 𝐵𝑗𝑖 (𝟓)

Kuramoto model

Using the nonlinear harmonic Kuramoto [4] model, we can 

exhibit dynamics approximately like that of biological 

neurons and generalized oscillators, using

𝑑𝜃𝑖

𝑑𝑡
= 𝜔𝑖 +

𝐾

𝑛
σ𝑗=1

𝑘 Aijsin(𝜃𝑗 − 𝜃𝑖) + 𝑓(𝑡),  1 ≤ 𝑖 ≤ 𝑛. (𝟔)        

Where 𝜔𝑖  is our natural frequency, 𝐾  is the coupling 

strength, 𝜃 represents the phase, and 𝐴𝑖𝑗  is the 𝑛 × 𝑛 

connectivity matrix for our network size 𝑛 with a forcing term 

𝑓(𝑡).

Calculating the Accuracy for Network Performance

We can present the performance with a confusion matrix given 

by
𝑇𝑃 𝐹𝑁
𝐹𝑃 𝑇𝑁

Where TP and TN represent the count of true inferred present 

and absent connections. Conversely, FP and FN represent the 

count of falsely inferred presence and absence of connections.

We can calculate the accuracy of our model by taking the sum 

of all true inferences over the sum of all inferences made, given 

by

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝐴𝑐𝑐 𝜙 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (𝟕)

Figure 2: graph of realistic dynamics modeled through the 

Dimensionless LIF
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